openPR Logo

Press Releases from Biochempeg Scientific Inc. (16 total)

What Are Components And Mechanism Action of Antibody-Drug Conjugates

Antibody-Drug Conjugates (ADC) is a type of anticancer drug that links a drug to cancer-targeting antibodies. The antibody detects tumor-specific proteins expressed on cancer cells and directs the cytotoxic anticancer drug towards the cancer cell. Compared to alternative cancer treatments, for example, chemotherapy, immunotherapy, radiation, and stem cell therapy, ADC combines chemotherapy and immunotherapy and allows selective delivery of anticancer drugs and reduces systemic exposure and toxicity of anticancer drugs. Components of ADC One

Sacituzumab govitecan shows promise in treating the most aggressive type of brea …

A unique antibody drug conjugate (ADC), which delivers a high dose of a cancer-killing drug to tumor cells through a targeted antibody, has been found in a global phase 3 clinical study to nearly double the survival time of patients with refractory metastatic triple-negative breast cancer. The study of the ADC drug sacituzumab govitecan (SG), for which Massachusetts General Hospital (MGH) was a lead clinical research site after serving as

ADC Has Curative Effect On Cell Surface Protein In Neuroblastoma

Physician-scientists in the Cancer Center at Children's Hospital of Philadelphia (CHOP) have developed a preclinical, potent therapy attached to an antibody that targets a surface protein expressed in most childhood neuroblastomas, effectively killing cancer cells. The researchers published their findings today in Science Translational Medicine. In 2008, researchers discovered mutations in the anaplastic lymphoma kinase (ALK) gene as the major cause of the inherited form of neuroblastoma and showed that these same mutations

What Factors Are Affecting The Effect of Cancer Treatment?

With social development and medical advances, people are living longer, but with that, many diseases are becoming more common, such as cancer. In 2020, there will be 19.3 million new cases of cancer and nearly 10 million deaths worldwide; and by 2040, the number of new cases is expected to reach 28.4 million, an increase of 47% from 2020. Unlike common diseases such as colds and coughs, cancer is a more

The Advantages of Monodisperse PEG In Drug Development?

Monodisperse PEG products usually are organic compounds with a molecular weight of less than 1000. Monodispersed PEG linkers are pure compounds with a single molecular weight. In contrast, polydisperse PEGs linkers contain variations in molecular weight with an average molecular weight. The use of polydisperse PEGs linkers in drug development has led to problems in biological applications due to steric hindrance and binding. With advancements in both synthetic and purification chemistry over the

PEG Products Used As Ingredients In Pfizer-BioNTech COVID-19 Vaccine

The Pfizer-BioNTech COVID-19 mRNA vaccine (Tozinameran or BNT162b2) is used to protect against COVID-19. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vaccine is approved for people who are 12 years of age and older. Its safety and effectiveness in people younger than 12 years of age have not yet been established. Health Canada first authorized this vaccine with conditions on December 9, 2020, under the Interim

Sacituzumab Govitecan Approval for Advanced or Metastatic Urothelial Cancer

On April 13, 2021, the U.S. Food and Drug Administration (FDA) has granted accelerated approval to Sacituzumab Govitecan (from Gilead Sciences) for use in adult patients with locally advanced or metastatic urothelial cancer who have previously received platinum-containing chemotherapy and either a programmed death receptor-1 (PD-1) or a programmed death-ligand 1 (PD-L1) inhibitor. Sacituzumab govitecan is a first-in-class Trop-2-directed antibody-drug conjugated to a topoisomerase I inhibitor (SN-38). Trop-2 receptor, a protein frequently expressed in multiple types

The Application of Click Chemistry In Life Sciences

Click chemistry has come into its own in a wide range of life science applications and opens up opportunities that lie between chemistry, biology and material science. Twenty years ago, soon-to-be Nobel laureate Barry Sharpless and co-workers began to promote the idea of designing reactions that would simply ‘click’, that is, proceed efficiently and selectively under mild reaction conditions. Initially, these chemists were mainly thinking of clicking together existing organic molecules to accelerate the discovery of new compounds with useful properties. But since then, our ability to customise and manufacture a wide range of biological entities, from antibodies to cells, has grown immeasurably, and click chemistry has also come into its own in a wide range of life science applications. What is click chemistry? Click chemistry is modular, wide in scope, gives very high reaction yields and generates only harmless by-products. Ideally insensitive to water and oxygen, the reaction conditions are benign, and the product requires little downstream purification. This would have excluded classic reactions like the Huisgen cycloaddition of an alkyne and an azide, which is useful for linking molecules, as traditionally this reaction requires refluxing in an organic solvent at 100˚C and still produces a mixture of isomer products. However, the addition of copper as a catalyst transforms the reaction into a prime example of click chemistry, by speeding up the reaction at lower temperature and favouring the formation of only one product.  Yet, even trace amounts of copper can be difficult to remove and harmful to cells. A copper-free click reaction was created by adding ring strains - akin to ‘loaded springs’ - to the click reactants. Releasing such strain becomes the driving force for the reaction, which readily proceeds at room temperature and without the metal catalyst. With progress in catalysts and the utilisation of ring strains, many classic chemical reactions have been reinvented as click chemistry and can now be carried out at ambient temperatures and under conditions that are harmless to living organisms and biological molecules. These attributes make click chemistry particularly appealing for bioconjugation, where biocompatible, highly specific and non-toxic chemical strategies are required to join together two or more molecules, one of which is a biomolecule. Only a ‘click’ away Similar to a lock and key system, click moieties are designed to react only with their click counterparts without cross-reaction with other functional groups. As they are small as well as water soluble, clickable reagents are also easily taken up by cells and can even cross the blood-brain barrier. Clickable components can be incorporated into the building blocks of cells, proteins and nucleic acids via biosynthesis or chemical modifications.  For example, during protein biosynthesis, cells may be tricked into incorporating an unnatural amino acid containing a click-ready group into the protein sequence, by a combination of specially engineered tRNA, ribosome and parallel genetic codes.  Alternatively, one can directly modify features of biomolecules, such as the glycan chains on antibodies and on the cell surface, to functionalise them with click-ready groups. Thereafter, these click moiety-containing biologics can be coupled to various other probes such as fluorescent labels, small-molecule drugs, carbohydrates, DNAs or RNAs, and proteins.  The good news for non-chemists is that there are already a number of reagent companies that sell ready-made click building blocks with easy-to-follow recipes, so they can be used in the desired applications straightaway. This provides a solution for carrying out simple chemistry on bench, without having to access Schlenk line, fume hood, and chromatography in a chemical laboratory. Click chemistry in life science applications Click chemistry is already widely used in pharmaceutical and life science applications and increasingly prompting large commercial deals. Drug discovery has been boosted by click chemistry, as not only the resulting chemical linkages (such as the triazole ring) are highly useful in medicinal chemistry, but also new and potentially more active compounds can be formed by clicking existing compounds together. This is seen in fragment-based drug screening and PROTAC, a targeted protein degradation drug platform, which is considered as the next hot drug development area. In the nucleic acid sequencing arena, ClickSeq, a click chemistry-based method for RNA sequencing has proven to be more robust and less error-prone than the enzymatic ligation commonly used to link sequencing adaptors during the creation of libraries for next-generation Illumina sequencing. Click chemistry also enables the coupling of antibodies and cytotoxic drugs to produce site-specific and stable antibody-drug conjugates (ADCs).  Biochempeg is especially good at click chemistry reagents which now widely used on biomolecular probes, two-dimensional gel electrophoresis separation, modification of peptide function with triazoles and natural products, and pharmaceuticals, nanotechnology, Biomaterials, etc. Company: Biochempeg Scientific Inc. Address: 108 Water Street, Room 4D, Watertown, MA 02472, USA Email: sales@biochempeg.com Website: https://www.biochempeg.com Biochempeg is a biotechnology-oriented company in Watertown, Massachusetts. We are dedicated to manufacturing and supplying high purity polyethylene glycol (PEG) derivatives and

Sacituzumab Govitecan, A Kind of ADC Drug Against Triple-Negative Breast Cancer

On April 22, the FDA approved sacituzumab govitecan for the treatment of adult patients with metastatic triple-negative breast cancer who have received at least two prior therapies for metastatic disease. It is a next generation antibody-drug conjugate designed by Immunomedics Inc. Sacituzumab govitecan is the first antibody-drug conjugate approved by the FDA specifically for relapsed or refractory metastatic triple-negative metastatic breast cancer. It is also the first FDA-approved anti–Trop-2 antibody-drug conjugate.

New Nanoparticle Can Kill Cancer Cells Efficiently And Selectively

Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have developed a novel type of nanoparticle that efficiently and selectively kills cancer cells, thus opening up new therapeutic options for the treatment of tumors. Many chemotherapeutic agents used to treat cancers are associated with side-effects of varying severity, because they are toxic to normal cells as well as malignant tumors. This has motivated the search for effective alternatives to the synthetic pharmaceuticals with which most

Immunotherapy, The Most Prominent Topic In Skin Cancer Research

A report published on May, 21, 2019 highlights the different research areas in the field of skin cancer, showing that immunotherapy is the most prominent topic and reveals the countries that are driving this research. The study, “Melanoma Research Insights: Impact, Trends, Opportunities”, released during Skin Cancer Awareness Month by information analytics business Elsevier, maps and analyses academic research on melanoma globally between 2013-2018. Findings in the report highlight that melanoma

Two New Diabetes Drugs Benefit For The Heart And Kidneys

Two new medications commonly used to treat type 2 diabetes are similar in their ability to reduce major heart complications, including heart attack, stroke and death from cardiovascular disease, according to research accepted for presentation at ENDO 2020, the Endocrine Society's annual meeting, and publication in a special supplemental section of the Journal of the Endocrine Society. One class of drugs, known as SGLT2 inhibitors, has a clear benefit over the

Peptide Modifications For PEGylation

PEGylation is the process of covalently attaching polyethylene glycol (PEG) polymer chains to peptides. By increasing their molecular mass and shielding them from proteolytic enzymes, PEGylation improves the pharmacokinetics of peptides and proteins. PEGylation reduces renal clearance and results in more sustained absorption after subcutaneous administration, as well as restricted distribution. PEGylations have been shown to significantly improve water solubility, biocompatibility, immunogenicity, and other physico-chemical properties. It is an established

Application of PEG In Click Chemistry

Polyethylene glycol (PEG) is a biocompatible, synthetic, hydrophilic polyether compound that has many applications, mostly in the medical industry, but also in the chemical and industrial sectors. The synthesis of PEG is done by polymerizing ethylene oxide, the main ingredient in antifreeze, using a ring-opening technique, which allows for PEGs of a range of molecular weights and molecular weight distributions to be constructed. This range in weights is what makes

What Are PEG Linkers?

Hydrophilic poly(ethylene glycol) or PEG-linkers are particularly attractive as a linker for conjugation. Water solubility, lack of toxicity; low immunogenicity and well defined chain lengths and molecular weights are specific characteristics of PEG moieties relevant to pharmaceutical applications. Hydrophilic linkers The link between the antibody and the cytotoxic agent plays a critical role in development of antibody-drug conjugates. The nature of the linker can significantly affect the potency, selectivity, and the pharmacokinetics of

Biochempeg developed a series of PEG compounds used for Semaglutide

Type 2 diabetes is the most common form of diabetes. Semaglutide is an agonist of glucagon-like peptide-1 (GLP-1) receptor that is developed to treat type 2 diabetes. It reduces blood sugar via increasing the production of insulin. Biochempeg has developed and can supply some key intermediates of Semaglutide. Semaglutide(trade names: Rybelsus,Ozempic) is a medication for the treatment of type 2 diabetes. It was discovered in 2012, by a team of researchers

Go To Page:   1 2 3 4 5 6 7 8 9 10