openPR Logo
Press release

How to Establish a Cleanroom Monitoring Plan

09-21-2017 10:03 AM CET | Industry, Real Estate & Construction

Press release from: CAS DataLoggers

Identify and Help Prevent Risks in Hospital & Pharma Cleanrooms

Many hospital and pharmaceutical technicians know that they need to establish an environmental monitoring plan/regime for their cleanroom, but CDC regulations are many and varied. How do you tie together the many different requirements to monitor, alarm and document the data?

If you work in a cleanroom monitoring application such as a product fill cleanroom, in non-sterile manufacturing, or in a medical cleanroom, this latest White Paper from CAS DataLoggers can help you to get started on an actionable monitoring plan.
Environmental Monitoring Basics:

Whether you’re a Surgical Technician, Quality Engineer, or Pharmaceutical Microbiologist, passing your standards audit will require a comprehensive monitoring plan.

CDC LogoCDC (Centers for Disease Control and Prevention) guidelines on environmental measurement in cleanrooms and isolated areas state: “Do not conduct random, undirected, microbiologic sampling of air, water, and environmental surfaces in health-care facilities (270,343). Category IB.”

The main risk to cleanrooms is the loss or reduction of sterility assurance and the subsequent microbiological contamination that follows. Environments are monitored to protect pharmaceutical products from contaminants and to prevent OOS (out of specification), OOL (out of limit), and OOT (out of trend) alarm events from occurring. This is the equivalent of the modern healthcare industry placing its emphasis on prevention rather than cure.

Isolated areas require both air and surface monitoring to achieve sterilization/decontamination. Without recourse to historical data in the form of stored measurements, technicians lack any reliable way to determine sterilization effectiveness.

Carefully consider the requirements of your specific class of cleanroom as they relate to measurement collection. For example, when working in isolated environments graded Class A, C and D, personnel should routinely sample the air and swab the surfaces. If your class mandates the daily use of particle counters (Grade A esp.) then consider using an automated monitoring system with remote monitoring capability for instant access to alarms.

Note that settle plates, although often used as a simple way to roughly gauge the level of microbial contaminants, are not by themselves sufficient to ensure sterilization or to pass an audit. If you plan on using an environmental monitoring system, be sure to set it to monitor even throughout the duration of settle plate use. The CDC’s guidelines state: “Do not use settle plates to quantify the concentration of airborne fungal spores (348). Category II”

An especially high risk to cleanrooms is posed by gram-negative bacteria which contaminate water and produce most toxics found in the microclimate. It’s a common problem in aseptic processes, generating endotoxins which cause disease. Product fill cleanrooms in particular are a good breeding ground for these bacteria since there are often multiple exposed petri dishes located throughout the cleanroom for research purposes.

This and other risks can be addressed by developing your own incubation regime, which in many cases requires specialized equipment. For example the CDC recommends to: ”Use standard cleaning and disinfection protocols to control environmental contamination with antibiotic-resistant, gram-positive cocci (e.g., methicillin-resistant Staphylococcus aureus, vancomycin intermediate sensitive Staphylococcus aureus, or vancomycin-resistant Enterococcus [VRE]) (318,320–322). Category IB.”

Before you consider the further details of your monitoring plan, ask yourself, are you planning on taking measurements manually or automatically?

Manually: A major source of contamination in labs is caused by personnel taking frequent manual measurements. The more frequent these manual samples are, the higher chance of microbial contamination.
Automatically: Automated monitoring systems can provide your business or organization with the technology to cut labor costs, save time, and measure your critical values at high accuracy. Full regulatory compliance with patient privacy and electronic documentation standards is possible using all the advanced archival and documentation capabilities available with system software.

Monitor, Alarm and Validate

Regular environmental measurements, whether taken manually or performed by an automated monitoring system, form the foundation of your individual risk assessment strategy. When conducted at the appropriate times and frequencies, these measurements give personnel time to take remedial action before product quality and/or environmental sterility are threatened.

For instant notification, many environmental monitoring systems feature wireless communication, giving users the ability to remotely receive alarms and monitor data in real-time. This capability is especially useful for maintaining Grade A cleanrooms and other areas with gram-negative bacteria.

Accurate data measurement is also useful for out of limit (OOL) and out of specification (OOS) investigations, which determine why a given alarm went off. Finally, monitoring systems save all data for documentation and audit/validation purposes.

Your environmental monitoring plan should contain these three key factors:

Determine Your Monitoring Points:

Your facility’s monitoring point layout depends on the size and area of your isolated environment. First determine where you need to take readings or to install sensors in your given cleanroom, hospital corridor, surgery, or other area. Your layout also depends on the level of risk to patient health or to product quality, for example whether you have an open or a closed process. As a good guideline, you’re safer having more monitoring points rather than less.

Before placing sensors, it’s critical to determine the area’s risk level using a designation of Low, Mid or High. In high-risk cases such as gram-negative bacteria applications, your installed sensors need a high accuracy to address the main risk of losing sterility through microbiological contamination.

Prioritize these areas:

Areas with higher travel/population (corridors, surgery prep areas, etc.)
Areas with longer work or incubation durations
Dirty or wet areas
Any significant variations within rooms

Putting this type of forethought into sensor placement helps you to determine how best to detect specific fungi/bacteria in operation-dependent regimes. This includes not only surface measurements but also active air sampling (volumetric air-samplers, particle counters etc.).

To accommodate a wider sensor grid, cleanroom monitoring systems are available in configurations with anywhere from one to hundreds of inputs. This makes them ideal to monitor filling machine cleanrooms, ISO 5 product fill cleanrooms, test sample incubation, non-sterile manufacturing, and many other applications.

Choose Monitoring Frequencies:

Also known as sampling rate, your monitoring frequencies should generally be performed frequently, at minimum recording a reading at each batch filling, at defined intervals, or immediately after sanitizing isolated & sterile areas.

You should also take a reading following:

Essential maintenance
Monthly/quarterly monitoring
Incubation of test samples
Critical times and temperature windows of operation-dependent regimes.

Monitoring systems can also accommodate different sampling rates for different cleanroom types. Your particular monitoring frequency will often depend on your individual cleanroom’s class, rated by the ISO (International Organization for Standardization). Example classes include:

ISO 5: Common examples are applications with specified filling points in liquid containers. Monitoring frequency needs to be either daily or at the end of each batch, whichever is higher.
ISO 7: This class includes gowning rooms and other applications which have surrounding areas rated at ISO5; here a weekly monitoring frequency is indicated.

Monitoring Systems and Sampling Rate:

As we covered in an earlier article, ‘How Fast Should You Sample on Your Thermocouples?,’sampling rate is highly dependent upon your individual application needs.

Modern environmental monitoring systems can sample data once every second or faster, which is more than enough for most cleanroom applications. Note that a high sample rate is inversely tied to system battery life and the specifications of the specific device chosen. Recording duration can be determined by dividing the data logger’s memory capacity by its sample rate. However, many monitoring systems utilize a non-volatile memory to ensure that all recorded data is still safe if the battery fails or power is lost.

In most cleanroom applications, your temperatures won’t fluctuate several times a second. With this in mind, you can configure your data loggers at a lower sampling rate (say, once every five or ten minutes depending on the measurement value). This helps to save device memory space and time spent trending data during analysis.

Applications that may require faster sampling rates include advanced scientific research, high-speed equipment tests, etc. If you do need to sample at extreme rates of several readings a second, you’ll need to use small sensors, and the material you’re monitoring has to have a small thermal mass, unlike when monitoring typical industrial process temperatures.

Documentation and Validation:

Full data documentation and subsequent validation is the third major component of an effective cleanroom monitoring regimen. For audit and standardization purposes, all your data and methodology needs to be recorded and validated, both for your own use and for inspectors. As part of this process, be sure to itemize your monitoring plan to give to auditors later.

Trending Environmental Data:

Armed with several months or a year’s worth of collected environmental data, you can, in many applications, examine it all in trend format to determine your plan’s effectiveness. Whether your regime is working as intended and you can consequently reduce sampling rate, or whether you find that your plan needs to be reconsidered, validation is a key reason to trend your data. Also be sure that your assembled data is easily accessible to inspectors on short notice.

Any and all cleanroom validation solutions need to be able to automatically record, store, and trend your environmental data. By using data logger software, you can view historic data by specific filters. This is an easy way to view all alarm violations over a given period, which helps in OOS/OOL investigations to discover why alarms triggered in the first place.

As part of good manufacturing practice (GMP), be on the lookout for microflora and specifically for resistant bacterial strains. Unlike settle plates, trended data can give you a detailed view of microbial contamination levels, leading to final validation.

Effective sterility assurance in cleanrooms and other isolated areas requires users to Monitor, Alarm and Validate as the three critical tenets of a comprehensive environmental monitoring plan. These mutually-complementary concerns give you actionable items to consider as you determine the ideal regime for your facility’s needs. With forethought and using a combination of sensors and software, you can help to ensure your facility’s environmental integrity and thereby achieve validation.
About the Authors:

CAS DataLoggers environmental monitoring systems are installed in a variety of hospital cleanrooms, pharmaceutical cleanrooms, government health centers, manufacturing plants, museums and galleries, and in all manner of additional applications.

To learn more about Cleanroom Monitoring Solutions, or to find the ideal solution for your application-specific needs, contact a CAS DataLoggers Application Specialist at (800) 956-4437.

Computer Aided Solutions, LLC. dba CAS DataLoggers is a distributor of data loggers, paperless recorders and data acquisition equipment.

CAS Dataloggers
8437 Mayfield Rd
Chesterland, OH 44026

This release was published on openPR.

Permanent link to this press release:

Please set a link in the press area of your homepage to this press release on openPR. openPR disclaims liability for any content contained in this release.

You can edit or delete your press release How to Establish a Cleanroom Monitoring Plan here

News-ID: 730356 • Views: 333

More Releases from CAS DataLoggers

Introducing OdaLog Gas Data Loggers from ThermoFisher
CAS DataLoggers is introducing OdaLog Odor & Gas Data Loggers, a family of portable gas monitors from ThermoFisher Scientific. Effective immediately, CAS will be responsible for the sales and support of all OdaLog products within the United States. OdaLog, owned by ThermoFisher Scientific Australia Pty Ltd, are used extensively in the wastewater industry to record the level of Hydrogen Sulphide (H2S) and other gas emissions in pumping stations, manholes and sewer
Visit CAS DataLoggers at Pittcon 2020
The World's Largest Lab Expo, March 3rd-5th in Chicago CAS DataLoggers is proud to announce that we will be exhibiting along with TandD US, LLC at Pittcon 2020! Pittcon is the world's leading annual conference and exposition on laboratory science. Hosted in Chicago, IL at McCormick Place on March 3rd-5th, Pittcon 2020 will draw a large crowd of attendees from industry, academia, and government from over 90 countries! This year, CAS
Visit CAS DataLoggers at AHR 2020
The World’s Largest HVAC event is about to get underway—the annual AHR 2020 Expo is returning to Orlando, FL on Feb 3-5th. CAS DataLoggers Sales Mgr. Peter Martin is proud to attend along with Japan’s #1 datalogger manufacturer—T&D! Come visit us at Booth #7490 to see our cutting-edge HVAC solutions for performance validation, energy audits, and more! With prices starting at just $109, T&D products give businesses and organizations an affordable
New ADwin-X-A20 Compact Data Acquisition System
CAS is pleased to announce the new ADwin-X-A20 compact data acquisition and control system. It features a high performance, dual-core, 64-bit processor plus analog and digital inputs and outputs and a 1GB Ethernet communications interface to provide extremely precise, low latency real-time operation. Programs can be quickly created using either the user-friendly ADbasic development environment or through Simulink via the ADsim interface. Standard Features: -XILINK ZYNQ ARM Cortex-A9 666 MHz CPU, 64-Bit

All 5 Releases

More Releases for Monitor

Car Monitor Display Global Car Monitor Display Market Insights, Forecast to 2025 This report presents the worldwide Car Monitor Display market size value, production and consumption, splits the breakdown data status 20132018 and forecast to 2025, by manufacturers, region, type and application. This study also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors and Porters Five Forces Analysis. Download Free PDF Sample
Transformer monitor and logger
Transformer monitoring made easy!!!! Miro-F Transformer monitor and logger is a precision power quality instrument, intended for permanent installation and specifically designed for comprehensive and reliable LV side transformer monitoring. • Measure three phase voltages, four currents and two temperatures (ambient and surface).' • Information includes V, I, P.F, THD, Sags,Swells, Interruptions and other power quality measurements. • Integrated WiFi and Cellular (3G/4G), provides platforms for TCP/IP, FTP, CiDR and DNP3 (SCADA). • Suited for
Monitor Data Integrity with Active@ Hard Disk Monitor
LSoft Technologies, one of the world's leading suppliers of disk and data utilities, presents Active@ Hard Disk Monitor: a complete solution for monitoring the health of your digital storage devices. This software provides full monitoring and control over your data by providing ongoing insights into its integrity and the status of your storage devices. In other words, if a drive looks like it might be about to fail, you'll know
ECG Monitor market
This report presents a 360-degree overview of the competitive scenario of the Global ECG Monitor market. Thus helping organizations understand the major threat and opportunities that vendors in the market are dealt with. It also includes detailed business profiles of some of the major vendors in the market. With the all-inclusive market data concerning the crucial elements and segment of the market that can influence the growth prospects of the
CHILDWISE Monitor Report 2017 - Music
ReportsWorldwide has announced the addition of a new report title CHILDWISE Monitor Report 2017 - Music to its growing collection of premium market research reports. The CHILDWISE Monitor is a comprehensive annual report focused on children's and teenagers' media consumption, brand attitudes and key behaviour, now in its 23rd year. This year, around 2000 children aged 5-16 across the United Kingdom were interviewed in depth on a range of topics. This
CHILDWISE Monitor Report 2017 – Money
ReportsWorldwide has announced the addition of a new report title CHILDWISE Monitor Report 2017 - Money to its growing collection of premium market research reports. The CHILDWISE Monitor is a comprehensive annual report focused on children's and teenagers' media consumption, brand attitudes and key behaviour, now in its 23rd year. This year, around 2000 children aged 5-16 across the United Kingdom were interviewed in depth on a range of topics. This